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Abstract – A Multi-hypothesis Iterated-Extended Kalman 

Filter (MHEKF) for passive sonar tracking and localization 
of surface and submerged targets using elevation and bearing 
angle measurements is presented.   The MHEKF operates in 
a multi-depth mode by creating a bank of independently op-
erating range-parameterized Cartesian EKFs, each receiving 
the same measurement data.   The multi-depth mode opera-
tion allows the EKF to determine a unique (x, y, z) position 
solution using elevation and bearing measurements.  At the 
first available measurement, the multi-hypothesis filter logic 
calculates the number and positioning of the depth banks in 
the water column from the operational decision radius along 
with the sensor beam widths and water depth.  The bank 
depths are set in a geometric progression that yields constant 
coefficient of variation in range calculated with respect to the 
operational decision region.  The MHEKF uses the normal-
ized likelihood from each EKF depth-mode output to recur-
sively update the target track.  Any velocity or Doppler in-
formation available will reduce track ambiguity that arises 
when the tracker is expected to distinguish fast moving tar-
gets on the surface from slow moving targets at depth.    

I. INTRODUCTION 

Passive detection tracking and localization of surface 
and submerged targets from angle-only measurements has 
wide application [1-6].   The application discussed in this 
paper focuses on passive tracking for bottom-mounted, 
influence type technology. These acoustic and magnetic 
sensors provide elevation and bearing measurements to 
targets.  This paper addresses the problem of using non-
periodic, noisy angle measurements from a sensor array to 
estimate and refine estimates of target position and speed 
in a fixed Cartesian coordinate system.  

The classical approach has been to use the extended 
Kalman filter (EKF).    We have built upon an iterated-
extended Kalman filter model originated for passive track-
ing of surface and subsurface targets from bearing and 
elevation measurements [1].  The lack of range informa-
tion was addressed by implementing a multi-depth mode 
Kalman filter.  The multi-depth mode works by creating a 
family of filters for each target.  Each filter in the family 
restricts the target’s tracked depth to within prescribed 
limits by generating hypothetical range measurements cen-
tered in the corresponding depth interval; the variance of 
these range measurements is set very high. 

The Multi-hypothesis Iterated-Extended Kalman Filter 
(MHEKF) creates a composite track where the probability 
of each model is calculated independently, then a multi-

hypothesis estimate and covariance are calculated from a 
weighted sum of the individual output models [3,4,5,6].  
Because the tracker remains in a fixed position the integra-
tion of target class or velocity information is needed for a 
unique solution [3,6].  That is, a unique solution from an-
gle vectors necessitates the platform trajectory have one 
more nonzero derivative than does the target.  Otherwise 
this additional information is needed for a unique mapping 
between the target parameters and the observation matrix.   
 

II. MULTI-HYPOTHESIS KALMAN FILTER 
 
The MHEKF operates in a multi-depth mode by creat-

ing a bank of independently operating range-parameterized 
Cartesian EKFs, each receiving the same measurement 
data.   At the first available measurement the multi-
hypothesis filter logic calculates the number and position-
ing of the depth banks in the water column from the opera-
tional decision radius along with the sensor beam widths 
and water depth.  The depth modes are set in a geometric 
progression that determines the corresponding range pa-
rameters for each filter in the bank so that the coefficient 
of variation in range calculated with respect to the opera-
tional decision region is constant.  The MHEKF uses the 
normalized likelihood from each EKF depth-mode output 
to recursively update the target track. 

Multiple targets are tracked by creating a new multi-
hypothesis filter for each target.  The measurement/track 
matching logic computes the normalized residual error 
inner product test statistic from each MHEKF.  This test 
statistic has a Chi-squared distribution [7,8] and is used to 
statistically compare new measurements to all existing 
target tracks.     
 
A. Range Parameterization of the EKF Depth Modes 

 
The filter depths in the multi-hypothesis filter are cen-

tered in depth intervals defined to follow a geometric pro-
gression.  The filter bank order and depth intervals are 
automatically set by the MHEKF upon the first elevation 
measurement input.  The filter depths are set in a geomet-
ric progression designed for a constant coefficient of varia-
tion in range calculated with respect to the operational 
decision region.   
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Our region in this study involves a cylinder centered 
around a bottom-mounted sensor with outer radius maxd , a 

water height of wH  and an elevation beam width αB .  
For this region the filter depth intervals are given by 
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More generally, depth intervals are designed to keep a 

constant coefficient of variation in range at the decision 
boundary for all filters such that model nonlinearities and 
relative range uncertainties are the same for all models in 
the filter bank when the target enters the decision region 
[5].   

Each hypothesis model is based on an iterated-
extended Kalman filter centered within its respective depth 
interval.  The filters operate independently from the same 
input measurement.  A Gaussian sum filter uses a weighted 
average to create a multi-hypothesis estimate for each up-
date cycle; the weights are formed by normalizing the like-
lihoods of each depth interval. 

 
B. Cartesian Iterated Extended Kalman Filter 

 
 A simple right hand Cartesian coordinate system defines 
the sensor coordinate system.  The origin of the sensor 
coordinate system is located on the bottom of the sea floor, 
directly below the sensor unit’s center.  The x-y axis is level 
with respect to the Earth.  Positive z indicates height above 
the bottom.  All positions are measured in meters.  The origin 
of the sensor coordinate system is displaced from the world 
coordinate system origin. The target position (x,y,z) in sensor 
coordinates is ]z y x[=x T

ssss .   Each EKF filter is 
defined in terms of relative coordinates, that is the difference 
between the target and the sensor.  For each depth model the 
state vector is then 
  
 ] z y x z y x[ = x T

ssssss .      (2) 
 
 
The measurement vector is bearing and elevation defined 
by 
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       A Kalman filter model is designed for each depth 
interval.  Because the relationship between the 
measurements and the target position is nonlinear, an 
iterated-extended Kalman filter (EKF) is used to provide 
an appropriate recursive filtering mechanism for each 
hypothesis or model.    Divergence can occur when the 
linear approximation of the relationship between the 
measurements and the state breaks down.  To address this 
problem, the recursive state estimate update equation was 
modified by η , a line search scaling term [1] as described 
below: 
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Specifically select ik,η  to be the { }10...,,2,1,0,)2/1(max =ll   
that satisfies (5).  If none satisfy (5), then one assumes 
convergence and sets ( ) ( )+=++ ikik xx ,1,ˆ .  One iterates 
from i = 0, 1, 2, …, Imax (for this study, Imax=10). 
 The filter state is a six by one column vector that 
indicates the target position and speed in sensor Cartesian 
coordinates.  Targets are assumed to be moving at a 
constant speed so the velocity portion of the true state 
remains constant.  The state vector (2) and the parameters 
of the system model are  
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where Q(t))N(0, (t)w ~ . 
 The state vector and error covariance matrix for each 
range hypothesis, )(kdr , are initialized with a position 
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calculated using the first elevation and bearing measurements 
along with an initial range hypothesis centered about the 
corresponding depth interval for the respective depth mode 
as follows 
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for r0
(kd) = hypothetical range measurement centered in corre-

sponding depth interval (note: use actual range measurement 
if one is available); )zzE(=R T

kk δδ  the measurement 
error covariance matrix and iz the ith element of the meas-
urement vector, z , at time kt . 

For the results contained in this paper, the sensors 
are assumed to produce independent bearing and elevation 
and in some cases Doppler velocity and speed measure-
ments.  Hence, the measurement covariance matrix is diago-
nal.  However, independent measurements are not a require-
ment.  The diagonal elements of the covariance matrix have 
units of radians2, radians2, meters2 per second2 and meters2 
per second2.   After the P matrix is initialized using this ap-
proach, it should be checked to ensure that it is positive defi-
nite. 
 
C.  Multi-hypothesis track estimate 
 

The MHEKF track is recursively updated using the 
independent filter bank outputs at each filter depth in com-
bination with a multi-hypothesis test. Upon every meas-
urement each filter in the bank is updated independently.   
For each filter track, the MHEKF then forms a composite 
track based on a weighted average of all depths within the 
corresponding track; the weights are based on the likeli-
hood of each track.      Figure 1 gives the logic structure 
for the multi-hypothesis filter bank.   In the case of multi-
ple targets the composite track is used to assign each target 
to an MHEKF filter bank.  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1   Multi-hypothesis filter bank logic structure. 

 
The multi-hypothesis estimate uses the normalized 

likelihood from each filter depth-mode output, or each 
EKF, to recursively update the target track [3].    Each fil-
ter model is independently updated.  The combined state 
estimate at each update cycle uses a Gaussian sum filter.    

For the Cartesian EKF model defined in Section B. the 
normalized likelihood weight for each depth mode ex-
presses as  
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The combined state estimate and covariance matrix for 

the MHEKF are formed from the normalized likelihood 
weights defined (9) and the respective updates from each 
EKF in the filter bank using the formulas below 
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A counter is inserted in the filter logic such that if the 

z coordinate, or depth, of the sub-track estimate for a given 
EKF is consistently out of bounds for that depth filter 
model or if the likelihood estimate remains below a 
threshold then the filter is automatically removed and a 
new threshold value for the remaining depth filter models 
is recomputed.  The threshold is originally set as a function 
of the number of depth modes set during the range parame-
terization process.  Any additional target class information 
can be used to refine the threshold settings.  
 

III. TRACKING ERROR ANALYSIS 
 

Test cases were run over varying track conditions.  In 
the illustrated examples the decision region was defined to 
be a cylinder in the water column with a radius of 500 me-
ters and an inner radius of 300 meters.   One goal of the 
MHEKF is to generate a ‘go active’ decision signal when, 
within a prescribed confidence interval, the MHEKF de-
tects a target in this decision region cylinder. 

 Figure 2 illustrates the test tracks in the x-y plane.  The 
test tracks were generated using straight-and-level trajecto-
ries across numerous depths, heading angles and closest 
points of approach (CPA). The sensor is centered in the deci-
sion cylinder, at the bottom of the water column.  An action 
decision is made when the target along a given track is lo-
cated within the inner and outer radius walls of the cylinder.   

 
 
 
 
 
 
 
 

 
Figure 2.   Target tracks viewed in x-y plane. 

 
The polar description for the above tracks for a target at  

a depth of z=280 is given in Figure 3.   For a target at that 
depth the range between the sensor and the target when the 
target enters the decision region is R=573 meters.   Recall, 
range measurements will not be available. 

 
 
 
 
 
 
 
 

 
Figure 3.  Range, elevation and bearing coordinates for target tracks for 

z=280. 
 

Figures 4a-d give the multi-hypothesis target track esti-
mates for different values of CPA.  The RMSE error bar 
spreads for each track illustrate the error variance centered 
about the mean estimate calculated over multiple Monte 
Carlo runs for that track. The black line is the true track   A 
CPA of zero indicates the target goes directly over the sen-
sor.  When the target tracks are outside the decision region 
but the error variance bar is inside the decision region, as in 
Figure 4d, a call is still likely to be made. 

 
 
 
 
 
 
 
 
 (a)    (b) 
 
 
 
 
 
 
 
 (c )    (d) 
 

Figure  4    RMSE error bar spreads for the MHEKF position estimates. (a) 
CPA=0 (b) CPA=150 (c) CPA=450 (d) CPA=600. 

 
Figures 5a-d give performance results over all test  

tracks taken over various values of CPA, target depth, ve-
locity and heading.   The plots give error statistics as a 
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function of track for range, elevation, bearing and depth 
estimates of target position at the precise point of a ‘go 
active’ decision.  The stars locate the mean error over mul-
tiple Monte Carlo runs for a specific track and the bars 
give the error variance for that track.  The tracks are num-
bered as follows in groups of five corresponding to the 
headings in degrees of [0 30 45 60 90] and tracks 1-5 are 
for a CPA of 0; tracks 6-10 are for a CPA of 150; tracks 
11-15 are for CPA=300; tracks 16-20 are for CPA=450; 
and tracks 21-25 are for CPA=600.  For example in Fig-
ure5(a) the bar corresponding to track number 4 
(CPA=450 and a heading of 45 degrees) indicates a mean 
error of 20 meters off from the true range of 573 meters 
and an RMS error of 43 meters 

 
 
 
 
 
 
 
        (a)    (b) 
 
 
 
 
 

 
 
      (c)    (d) 

Figure 5.  Error analysis for multi-hypothesis tracking filter.   
 

IV. PERFORMANCE RESULTS  
 
Multiple runs were made to examine tracking per-

formance of the multi-hypothesis tracker.  Tracking suc-
cess was defined as a proper ‘go active’ call inside the 
decision boundary and positioning to within 20 percent of 
the true track.  Table 1 gives a breakdown of the run pa-
rameters  

TABLE 1 

VARIABLE RUN PARAMETERS USED IN TRACKER TESTING 

 Water depth 
300 meters 

Water depth 
200 meters 

Target height above 
sonar (Meters) 

Surface, 280, 200, 
160, 80 

Surface, 160, 80 

Target speed (knots) 4, 10 4 
Target CPA (Meters) 0,150,300,450,600 0,150,300,450,600 

Target headings 
(Degrees) 

0, 30, 45, 60, 90 0, 30, 45, 60, 90 

 
 

Overall about a 78% success rate was achieved from 
elevation and bearing measurements coupled with bound-
ing of the velocity vectors with a 20-knot constraint.  In-
clusion of speed or Doppler information into the EKF 
equations raised the level to about a 95% success rate.    

A Pareto analysis was completed on the control data 
taken over tracking runs given elevation and bearing 

measurements and bounded velocity vectors.  Figure 6 
gives the corresponding Pareto diagram for the tracking 
errors.  

 
 
 
 
 

 

 
 

 
 
 
 
 
 
 
 
 
 
Figure 6.  Pareto chart for 24000 test runs with bounding of the velocity 
vectors. 
 

Tracking errors were broken into one of three catego-
ries.  The first and largest category was tracking failures 
that occurred when the tracker locked onto a slow moving 
bottom track for a fast moving surface target or vice versa.  
This occurs when the velocity bounds in the filters are 
large due to inadequate target class or velocity information 
and the rate of change in the bearing and elevation are the 
same for the two filter depth modes.  Additional target 
class or velocity information is required to eliminate this 
problem.  Category 2 comprised all other tracking failures 
that arose from poor positioning.  These were due mostly 
to improper thresholding and weighting in the multi-
hypothesis stage of the tracker resulting from inadequate 
target information.  The final category consists of targets 
which were either missed completely or not given a ‘go 
active’ while in the decision region.  The dominant set of 
targets here were targets low in the water column that had 
already moved past CPA and exited the decision region 
before the tracker initiated a ‘go active’ call.  The missed 
calls occurred most often when the tracker locked onto a 
near surface track for a deep submerged target. With 
proper target class or velocity information the tracker 
would be able to eliminate the near surface track as an 
unlikely scenario because the high rate of change in eleva-
tion coupled with the long ranges of the surface track 
would not fall within the velocity variance. 

Figure 7 compares run results for different levels of 
target velocity information. Each bar indicates the percent-
age of tracking errors that occurred over runs within the 
specified categories. Run results are broken down into 
three categories: elevation and bearing measurements with 
velocity bounding on the estimate equations; elevation, 
bearing and speed measurements input to the estimation; 
and elevation, bearing and Doppler measurements. Notice 
the inclusion of speed or Doppler directly into the state 
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estimate equations lowers the percentage of tracking fail-
ures from greater than 20 percent to on the order of 5 per-
cent.  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
Figure 7. Relative tracking error for different levels of velocity informa-
tion. 
 

V. DISCUSSION AND CONCLUSIONS 

We have developed and implemented an iterated-
extended Kalman filter for target tracking.  Problems asso-
ciated with missing range measurements have been ad-
dressed by implementing a multi-depth mode tracker. 
Range measurements are artificially created by initializing 
multiple Kalman filters at pre-determined depths.  Assign-
ing a depth to an elevation/bearing pair uniquely solves the 
x, y, z target position initialization problem.  Hence, an 
elevation/bearing pair will result in Nd Kalman filters - one 
at depth 1, one at depth 2, …, and one at depth Nd.  A 
multi-hypothesis estimation scheme is used to determine 
the target track from the Nd Kalman filters.   Target related 
bounding of the velocity vectors is necessary in the ab-
sence of range information.  Velocity or speed information 
is needed to eliminate track ambiguities. 

Track ambiguity arises when the tracker is expected to 
distinguish fast moving targets on the surface from slow 
moving targets at depth unless target class or velocity in-
formation is entered into the multi-hypothesis decision 
logic.  In addition to bounding the velocity vectors for each 
filter depth model, target information must be coupled to 
the threshold and counter parameters in the Gaussian sum 
filter.  Performance is inversely related to target velocity.  
     To prevent filter divergence, a scaling term, η, has been 
included in the recursive state estimate update defined in (4).  
During the recursive state estimate update, η is initialized to 
1.0.  If the line search inequality in (5) is not satisfied, η is 
then repeatedly halved until the inequality is satisfied.  If the 
inequality is still not satisfied after ten attempts, η is then set 
to zero.  This line search procedure ensures that the iterated 

Kalman filter converges.  Equations (4) and (5) detail this 
procedure.  

 A Pareto analysis of the run results indicate that consid-
erable performance gains are achieved when either speed or 
Doppler measurements are available to the tracker.  Future 
analysis would involve modification of the propagation equa-
tions for long lag between samples, a broader sensitivity 
analysis, and a detailed analysis of variance.   
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